Key to SOC Success

- SOC – System On Chip
- SOC Trends
- Design and verification methodology
System On Chip

System On Chip – Consist of two parts
- Hardware: System architecture & chip architecture
- Software: Device driver & operating system

Chip manufacture/Design House need to provide a Total Solution for your customers.
- Reference design/complete product
- Application support
SOC Trends

Three Trends of SOC
(According to Dave Reed of Cadence Design)
- Application Convergence
- Consumerization of the electronics industry
- Exponential growth of available transistor
SOC Trends

- Application Convergence
 - Set top boxes
 - Decode cable signals
 - Internet access
 - Digital Video Recorder
 - Cell Phone
 - Traditional cell phone
 - MP3 player
 - Digital Camera
 - PDA
SOC Trends

- Consumerization of the electronics industry
 - Design cycle times are now dictated by the consumer.
 - One year the most
 - Majority of the functions are pushed to chip.
 - Lower cost
 - Lower Power
 - The ability to rapidly generate variants of the SOCs will be required to meet the consumer time frame and quench the thirst for differentiation.
SOC Trends

- Exponential growth of available transistor
 - 100 + million transistors can be made on a single die
 - The cost of the transistor is approaching free
 - 10^{-5} cents / transistors (US dollar)
SOC Trends

Challenge for the chip design house
- Chip company need to acquire system knowledge, both hardware and software.
- Need for increasing the productivity of design activity by adopt effective design reuse methodology.
- Harder to test millions of transistor on a single die. Design for Test is critical for the success of products.
System Knowledge

- Hardware / Software tradeoff
 - Application Driven
 - Cost Driven
- Software Platform (require operating system?)
 - Linux Operating System
 - Device driver
- Hardware Performance requirement
 - IO/Data Bus Throughput
 - CPU/DSP processing power
Design for Reuse (In House IP)

- Integration-Driven Reuse
 - Focus on the needs of the IP integrator – the SOC designers.
 - Internal Bus Architecture
 - Pipeline/Non-Pipeline
 - Central arbitration/distributed arbitration
 - DMA architecture
 - Software model / descriptor definition
 - Memory to Memory / Device to Memory
Design for Reuse (In House IP)

- Integration-Driven Reuse (cont)
 - System Register File
 - Central / distributed
 - Address mapping
 - Debug Logic
 - Capture bus trace
 - Direct control of internal bus
 - Direct control of internal register
IP Availability for Licensing

Typical IP available for purchase
- CPU: ARC, ARM, Tensilica and MIPS
- Bus Interface: PCI and PCIX
- Serial Interface: I2C, IrDA, UART and USB
- LAN: Ethernet 10/100/1000 MAC, HDLC, SONET Framer, Transceiver and Framer.
- Memory Compiler: Artisan, Dolphin Tech and Virage
Cell Based Design Flow

- RTL
 - Synthesis
 - Gate Netlist
 - Extraction & Delay Calculation
 - RC
 - P & R
 - Static Timing Analysis
 - GDS
 - Tapeout
CAD Tools

- Logic Simulation
 - VCS (Synopsys)
 - NC Verilog (Cadence)
- Synthesis
 - Design Compiler (Synopsys)
 - Ambit (Cadence)
- Static Timing Analysis
 - Primetime (Synopsys)
- P&R
 - Apollo-II (Avant)
 - Silicon Ensemble (Cadence)
Verification Environment

- Verification occupy higher percentage of total effort.
- Random Test Generation is a must
 - Micro Architecture verification
 - System level verification
- Micro Architecture verification environment need to be reusable in the system level verification
- Transactor development
Design For Testability

- To ensure high quality of production parts
 - Functional pattern can no longer achieve the high coverage in the complex SOC design.
- Build In Self Test (BIST)
 - Embedded memory
- Scan Insertion
 - Random logic
 - Stuck-fault model
 - Increase controllability and observeability
Design For Testability

- Timing test
 - Functional tests
 - Using scan path

- Other games you can play
 - Combine Primary Inputs and Exclusive-Or Primary Output
 - Changing scan clock frequency to test timing path
You need software to help you manage your complex design data base.

Revision Control (for text file)
 - CVS
 - RCS

Bug Tracking
 - GNATS
Business Model

Division of work

- System house: system software development, board design and sales channel
- SOC: Micro architecture, specialty IP development, IP integration and basic software platform development.
- Design service: providing IP, backend, foundry and packaging support
Conclusion

- High entry barrier, but high reward
- First design is always difficult, but it will get easier.
- System knowledge
- This is not a rocket science. Experience is everything.
 - Retain experienced designers to ensure long term success.